首页 > 旅游日报 > 热点 > 正文

全球快消息!大语言模型中的涌现现象是不是伪科学?

来源:程序员客栈 2023-06-08 05:40:37

Datawhale干货


(资料图)

作者:平凡@知乎,诺桑比亚大学,在读博士

今天晚上,花了一点儿时间看了两篇文章:

《Emergent Abilities of Large Language Models》[1]

《PROGRESS MEASURES FOR GROKKING VIA MECHANISTIC INTERPRETABILITY》[2]

这两篇讲的都是emergent behavior,即涌现现象。

大规模神经网络下的涌现现象

在机器学习中使用大规模神经网络时,由于增加了参数数量、训练数据或训练步骤等因素,出现了定性上的新能力和性质,这些能力和性质在小规模神经网络中往往是不存在的。

第一篇文章举了这个例子,每个图都可以理解为一个任务,横轴是神经网络的规模,而纵轴是准确率,可以理解为模型的性能。

我们拿图一来看,在10的22次方前,这些模型基本上的性能基本上都很稳定在0附近,而在10的22以后,突然在10的24次方上获得了很大的性能提升,在其他的几个任务上都表现出类似的特征。

意想不到的效果

第二篇文章更是有趣,我直接把推特一位博主的评论引用在这里:

作者发现,当我们训练用网络计算同余加法 a+b = ? (mod c) 时,网络在某个时间突然获得了 100% 准确率。分析发现,神经网络实际上“顿悟”了使用傅立叶变换来计算同余加法!这个算法可以证明是正确的, 反人类直觉的。

从这俩例子里面我的感受是,只要数据量足够且真实,且模型没有硬错误的前提下,不断的训练说不定真的能够产生一些意想不到的效果。

还有就是我觉得人类现在积累的知识并不少,但是系统的少,零星的多,如果类似ChatGPT这样的大模型可以拿所有的人类已有知识进行不断学习的话,我觉得有很大概率会让它涌现出意想不到的能力。

甚至可能把人类的生产力解放提前很多。

参考

1.https://arxiv.org/pdf/2206.07682.pdf2.https://arxiv.org/pdf/2301.05217.pdf

标签:

编辑:
逛厂寻匠:新技旧章梦生长 百龙总裁孙寅贵:风浪中成就
北京燕翔谭阁美饭店推出冬季 中国旅游住宿业发展报告(20
"冰雪之冠"亮相北京 黑龙江 TripAdvisor(猫途鹰)发布
华侨城挂牌新三板:借力资本 乐视杀入酒店生活服务O2O:

热点

Datawhale干货作者:平凡@知乎,诺桑比亚大学,在读博士今天晚上,花了

详细>>

6月7日上午即将开始考试之时,山师附中考点一名考生从考场内心急火燎地

详细>>

女性适当食用蒲公英有很多好处,以下是一些常见的好处:1 缓解生理期不

详细>>

汽车的本质,在于提供安全、舒适、便捷的出行方式。随着电动化、智能化

详细>>

新京报贝壳财经讯6月7日,深南电A(000037 SZ)通过投资者互动平台就公

详细>>

中国港湾官微消息,6月6日上午,山东港口集团国际投资公司揭牌暨海外发

详细>>

最近更新